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Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet
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We have investigated, by Monte Carlo simulation, the phase diagram of a three-dimensional Ising model
with nearest-neighbor ferromagnetic interactions and small, but long-range~Coulombic! antiferromagnetic
interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries,
which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size
scaling analysis confirms that the melting of the lamellar phases into the paramagnetic phase is driven first
order by the fluctuations. Transitions between ordered phases with different modulation patterns are observed
in some regions of the diagram, in agreement with a recent mean-field analysis.
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I. INTRODUCTION

Models with a competition between a short-range ord
ing interaction and a long-range frustrating interaction
relevant to describe a large number of experimental syst
in soft-matter physics~diblock copolymer melts@1#, cross-
linked polymer mixtures@2# and interpenetrating network
@3#, oil-water surfactant mixtures@4–6#! and in magnetism
~ultrathin magnetic films@7–9#!. These are also invoked t
explain glass formation in quite different situations such
doped Mott insulators@10–12# and supercooled liquids
@13,14#. Some generic features shown by these models
the existence of mesophases characterized by modulated
tial patterns and the importance of the fluctuations t
strongly influence the physics at and above the transitio
these various phases.

A simple version of a system with such a uniform frustr
tion consists of a Coulomb frustrated Ising ferromagnet,
which Ising spins placed on a three-dimensional cubic
tice, interact via both nearest-neighbor ferromagnetic c
plings and long-range Coulombic antiferromagnetic co
plings. The mean-field theory@15# predicts a complex
temperature-frustration phase diagram in which the lo
temperature region displays infinite sequences of comme
rate and incommensurate modulated phases and is sepa
from the high-temperature paramagnetic region by a line
second-order phase transitions. However, both an analy
work based on the self-consistent Hartree approximation@16#
and a first Monte Carlo study@17# indicate that the fluctua
tions drive the transition from second to first order. At lea
in the region around the transition, the mean-field phase
gram is thus dubious.

The purpose of this paper is to thoroughly investigate,
Monte Carlo simulations, the main characteristics of
phase diagram of the Coulomb frustrated Ising model. Co
pared to other systems, this model poses several serious
ficulties to computer simulations: one stems from the lo
range nature of the frustrating interaction and the ot
concerns finite-size studies of phases with modulated or
After briefly presenting the model and reviewing the resu
of previous work~Sec. II!, we discuss in Sec. III the meth
1063-651X/2001/64~3!/036109~9!/$20.00 64 0361
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odological aspects of our Monte Carlo simulations. We ha
used two different algorithms: a cluster algorithm for sm
frustration and a parallel tempering method for large frust
tion. The results, concerning the nature of the transition
tween the paramagnetic and the modulated phases, are
sented in Sec. IV. A careful finite-size scaling analy
confirms the first-order character of this transition. We a
give, in this section, a selected study of transitions betw
different modulated phases.

II. THE COULOMB FRUSTRATED ISING FERROMAGNET

A. The model

The Hamiltonian of the model is

H52J(
^ i , j &

SiSj1
Q

2 (
iÞ j

v~r i j !SiSj , ~1!

whereJ andQ are both positive and denote the strength
the ferromagnetic and the antiferromagnetic interaction,
spectively; Si561, is the Ising spin variable, and th
bracket^ i , j & means that the summation is restricted to d
tinct pairs of nearest neighbors;r i j is the distance betwee
the sitesi andj on a three-dimensional cubic lattice, andv(r )
represents a Coulomb-like interaction term such thatv(r )
;1/ur u when ur u→`.

Because of the Coulomb interaction, the existence of
thermodynamic limit requires that the total magnetization
the system be zero. As a consequence, the ferromagneti
der is forbidden at all temperatures and for any nonz
value of the frustration parameterQ/J. In three dimensions
one expects this system to have an order-disorder trans
at finite temperature, but contrary to the case of the unfr
trated system, the low-temperature ordered region exhib
complex frustration-temperature phase diagram with a v
ety of modulated phases. We first summarize the exact
sults obtained for the ground states and the results of
mean-field theory@15#, which both have guided the Mont
Carlo simulations.
©2001 The American Physical Society09-1
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B. Ground states

At zero temperature, the phase diagram can be calcul
exactly. It was done numerically forv(r ) equal to the true
Coulombic interaction (1/r ) and analytically forv(r ) ex-
pressed in terms of the lattice Green function@15#. For small
values of the frustration parameter, the ground state con
of lamellar phases in which lamellae of widthm, made up by
parallel planes of ferromagnetically aligned spins, form
periodic structure of length 2m along the orthogonal direc
tion. When the frustration increases, the period of the lam
lar phases decreases until one reachesm51. Each lamellar
phase is the ground state for a finite interval of the frustrat
parameterQ/J. When this latter goes to zero, the width
lamellae diverges as (Q/J)21/3 and the range of stability o
the successive lamellar phases shrinks to zero as (Q/J)4/3.
For Q/J,1, the ground states obtained by the numeri
calculation for the true Coulombic potential and those o
tained by the analytical calculation for the inverse latt
Laplacian are almost identical.

For larger values of the frustration parameterQ/J, the
system loses the translational invariance in a second d
tion and the ground states then consist of tubular pha
Eventually, the translational invariance is lost in the th
direction and the ground states are orthorhombic phase
the limit of large frustrations, the ground state is a Ne´el
antiferromagnetic phase@15#. Even if the sequence of groun
states is the same for the true Coulombic potential and
the inverse lattice Laplacian potential, the sequence of f
tration parameters to which these ground states are as
ated is more and more different whenQ/J increases. In the
following, we focus on the region of small or moderate fru
tration parameters (Q/J<1).

C. Frustration-temperature phase diagram

At finite temperature, the phase diagram can no longe
obtained exactly. We summarize here the results obta
within different approximations. A detailed analysis has be
performed within the mean-field approximation@15#. For
each frustration parameterQ/J, there is a continuous trans
tion at finite temperature between the disordered phase
modulated phases. The wave vector that characterizes
modulation at the transition varies continuously with t
frustration parameter; as a result, a succession of incomm
surate modulated phases is predicted along the trans
line. As shown in Fig. 1, the phase diagram is divided in
two main regions: above the transition line~full line!, the
system is disordered~paramagnetic!, whereas an infinite
number of modulated phases exists at low temperatures~only
a few of them are displayed in Fig. 1!. WhenQ/J goes to
zero, the line of critical points goes continuously, b
nonanalytically towardTc

0 , the critical temperature of the
unfrustrated Ising model. To describe the low-temperat
region, it is convenient to use the short-hand notation in
duced by Fisher and Selke@18# for characterizing modulated
phases:̂ m1

n1m2
n2 , . . . ,mp

np& designates a modulated pha
formed by the periodic repetition of a fundamental patte
consisting of a succession ofn1 lamellae of widthm1, fol-
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lowed byn2 lamellae of widthm2, and so on, where themi ’s
and theni ’s are integers and where two successive lame
are composed of spins of opposite sign. From the zero t
perature axis springs an infinite number of quasivertical lin
that separate the various simple lamellar phases^m&. At fi-
nite ~nonzero! temperatures, these lines split into branch
separating phases with more complex modulations, e
branch splitting itself at higher temperature into ne
branches, etc., according to ‘‘structure combination bran
ing processes’’@19#. Close to the transition line, one expec
incommensurate phases. By using the soliton approach
veloped by Bak and co-workers@20,21#, an approach tha
focuses on the behavior of the domain walls that sepa
commensurate regions, one can study the melting of c
mensurate phases into incommensurate phases; the res
lines are shown as the dotted and dashed curves in Fig.

In addition to the mean-field description, the mea
spherical version of this model, in which spins are taken
be real numbers with the global constraint that their me
square value is equal to one, has also been studied@22#. In
three dimensions, the transition between disordered
modulated phases is also predicted to be continuous, a
with a feature coined ‘‘avoided critical behavior’’@22#; for
vanishing frustration, the transition temperature goes t
value that is much below the temperatureTc

0 of the unfrus-
trated model. Nussinovet al. @23# have subsequently show
that this behavior remains for spin variables withO(n) sym-
metry whenevern.2. For n51 ~Ising spins!, one expects
the Coulomb frustrated model to be in the Brazovskii cla
of Hamiltonians@16# and consequently, as predicted from
self-consistent Hartree approximation, to display a first-or
transition between modulated and disordered phases. S
the mean-field approximation predicts a continuous tran

FIG. 1. Temperature-frustration mean-field phase diagra
There is an infinite sequence of flowers of complex modula
phases appearing at finite temperatures in the range of the fru
tion parameter for which the ground states are simple lame
phases. The units are chosen such thatkB5J51.
9-2
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MONTE CARLO STUDY OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 64 036109
tion ~see above!, the change of order of the transition
induced by the fluctuations.

III. SIMULATIONS

A. Introduction

The Coulombic interaction is the source of several di
culties and limitations for computer simulations that we n
review.

~i! To properly account for the long-range nature of t
interactions in systems with periodic boundary conditio
the minimum image convention used in models with sho
range interactions cannot be used, and a complete calcul
of the site-site interaction terms requires considering all
images of the simulation basic cell, a procedure that is r
ized by using Ewald sums@24#. For a lattice system, the
site-site pair interaction terms are calculated once for al
the beginning of the run and are stored in an array for
entire run. Therefore, a large number of reciprocal vect
can be included in the Ewald sum, which ensures a v
good accuracy for the calculation of the Coulomb potent

~ii ! For a single spin flip, the energy update involvin
Coulombic terms is performed by summing over all latti
sites. Therefore, for a lattice with a linear sizeL and with a
constant Monte Carlo swap per spin, the computer time
proportional toL6 for a system with Coulombic interaction
whereas it goes only asL3 for a system with short-rang
interactions. For a given computer time, the maximum lin
size that one can consider for the Coulomb frustrated mo
systems is then roughly the square root of the linear siz
its counterpart without frustration. This strongly limits th
largest system size that can be studied with the present c
puter capabilities~typically L.20).

~iii ! The mean-field analysis summarized above has
vealed that upon decreasing the temperature at a fixed v
of the frustration parameterQ/J, the system undergoes
sequence of phase transitions involving different modu
tions before reaching the ground state. This complex ph
diagram corresponds, of course, to a system in the ther
dynamic limit. In a Monte Carlo study, one must perform
finite-size analysis in order to extrapolate to the limit of
infinite system. For simple models in which only a fini
number of phases are present, one has to study a finite n
ber of transition lines; increasing the size of the system p
gressively moves these lines toward their location in the th
modynamic limit. In the present model, a small temperat
range may include a large number of modulated phases
may or may not be observed in a finite system depending
the commensurability between the period of the modulat
and the linear size of the system. Upon increasing the la
not only do the phase boundaries move~as in a standard
model!, but new phases with more complex modulation p
terns may appear as well. This feature, akin to a proces
degeneracy lifting, makes the finite-size analysis much m
difficult.

~iv! To ensure that the proper ground state is obtained,
size of the lattice must be compatible with the period of
expected lamellar phase. For instance, for a ground state
responding to an̂m& phase, a system of size 2pm with p
03610
-

,
-
ion
e
l-

t
e
s

ry
l.

is

r
el
of

m-

e-
lue

-
se
o-

m-
-
r-
e
at
n
n
r,

-
of
re

e
e
or-

>1 in at least one direction must be used, otherwise,
system misses the proper phase transition, and the ener
the low-temperature region is much higher than that obtai
with commensurate lattice sizes. This limits the range
frustration parameters that can be studied.

A first Monte Carlo study@17# was performed by using a
Metropolis algorithm with the constraint of zero total ma
netization. The phase boundary between the paramagn
phase and the modulated phases was located. The do
peak structure of the energy histograms close to the tra
tion region, and the occurrence of a hysteresis loop betw
heating and cooling, runs strongly, suggesting that the tr
sition is first order. The purpose of the present work is
complete this first study by a more exhaustive investigat
of the phase diagram and a finite-size scaling analysis
order to achieve this, more efficient algorithms have be
developed. In all simulations, the true Coulomb poten
v(r )51/ur u is used.

B. Cluster algorithm

For continuous and weak first-order transitions, clus
algorithms improve the convergence of Monte Carlo ru
close to the transition@25#. Let us briefly review the avail-
able methods; the standard cluster algorithms~Swendsen-
Wang@26# and Wolff @27#! take advantage of a local symme
try, like the up-down spin symmetry, but they cannot be us
for systems that have the constraint of zero total magnet
tion. For Hamiltonians with algebraic interactions, an ef
cient full cluster method has been developed@28–30#, that
generalizes the Swendsen-Wang~or Wolff! algorithm to
long-range interactions. This method, as with the previo
ones, requires the existence of a local symmetry and ca
be straightforwardly applied to Coulombic systems.~Recall
that in the present model this constraint stems from the
istence of the thermodynamic limit.! Recently, Dress and
Krauth @31# have introduced a cluster algorithm that mak
use of the geometrical symmetries of the system. These s
metries are conserved even in the presence of the const
of zero total magnetization. Dress and Krauth first studie
hard-sphere system. Herringa and Blo¨te @32# subsequently
implemented this algorithm for a lattice gas~or correspond-
ingly an Ising spin system! with short-range interactions. Th
procedure is the following: two thermal clusters of oppos
signs are simultaneously grown by randomly choosing a s
site and its symmetric counterpart obtained through a g
metrical symmetry~translation, rotation, inversion, . . .! of
the Hamiltonian; the clusters are built by adding neighbor
spins of the same orientation with the probabilityp5@1
2exp(24bJ)#. It can be shown that, provided the symmet
group allows for particles to reach any site of the system,
algorithm satisfies ergodicity, and the detailed balance
given by

Ti→ j
b Ai→ j

b Pi
b5Tj→ i

b Aj→ i
b Pj

b , ~2!

whereTi→ j
b denotes the probability of growing two cluste

whose global flips transform a spin configurationi into j,
Ai→ j

b is the acceptance ratio for this change of configuratio
9-3
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and Pi
b is the Boltzmann distribution. With the two cluste

built with the bond probabilityp5@12exp(24bJ)#, one can
easily show that@32#

Ti→ j
b

Tj→ i
b

5
Pj

b

Pi
b

. ~3!

As can be checked by substituting Eq.~3! in Eq. ~2!, one can
then chooseAi→ j

b 51, i.e., the flip of a cluster is alway
accepted@33#.

For systems whose Hamiltonians can be divided into t
parts, a reference HamiltonianH0 with short-ranged interac
tions and a HamiltonianH1 with long-ranged interactions
we propose the following hybrid cluster algorithm. The clu
ters are built with bonds corresponding to the refere
Hamiltonian, but instead of accepting all the Ising clust
that are formed, the detailed balance is now expressed a

Ai→ j
b

Aj→ i
b

5exp~2bDE1
j i !, ~4!

whereDE1
j i is the difference of energy between thej th and

the i th configurations for the HamiltonianH1. Equation~4!
is fulfilled if Ai→ j

b is chosen according to a Metropolis rul
the new configuration is accepted ifDE1

j i ,0, otherwise a
random numberh is chosen between 0 and 1 from a unifor
distribution and the new configuration is accepted ifh
,exp(2bDE1

ji).
This algorithm remains efficient if (bDE1

j i ).0 for most
generated configurations; the rate of acceptance is then c
to 1 and most generated configurations are accepted@34#.
Unfortunately, for our model, the long-range antiferroma
netic interaction never satisfies the above condition, and
acceptance ratio is then very small; clusters are almost n
flipped, and the procedure becomes inefficient.

In order to construct a better cluster algorithm, let us fi
analyze the drawback of the above method. Close to
transition temperature, the clusters, which have been buil
using the reference Hamiltonian, are actually too large.
deed they have been generated with a bond probability th
too large because it corresponds, for the reference syste
a temperature that is located below its critical temperatu
Close to the transition temperatureTc(Q/J), the typical ex-
citations in the pure Ising model are much larger than th
for the frustrated system because the existence of large
mains is prevented in the latter by the frustration@recall that
Tc(Q/J),Tc

0]. As a consequence, the acceptance ratio
comes very small and the generated clusters are almost n
flipped.

It is possible to obtain a more reasonable acceptance
by modifying the above procedure as follows: two therm
clusters of opposite signs are grown simultaneously by r
domly choosing a seed site and its symmetric counter
obtained through a geometrical symmetry~translation, rota-
tion, inversion, . . .! of the Hamiltonian. One then add
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neighboring spins of the same orientation in each clus
with the probability@12exp(24bef fJ)# wherebe f f,b.

The detailed balance is given by

Ti→ j
be f fAi→ j

be f fPi
b5Tj→ i

be f fAj→ i
be f fPj

b , ~5!

where all quantities are defined below Eq.~2!. Combining
Eqs. ~5! and ~3! ~this latter being expressed from the refe
ence Hamiltonian! one obtains

Ai→ j
be f f

Aj→ i
be f f

5exp@2bDE1
j i 1~be f f2b!DE0

j i #, ~6!

whereDE0
j i is the energy difference between thej th and the

i th configurations for the reference Hamiltonian.
Note that whenbe f f→0, the cluster size goes to 1, an

one recovers a two-spin Metropolis rule. For nonzerobe f f ,
the Metropolis rule for the cluster acceptance is the follo
ing: the new configuration is accepted ifDE1

j i 1(1
2be f f /b)DE0

j i ,0, otherwise, a random numberh is chosen
between 0 and 1 from a uniform distribution and the n
configuration is accepted ifh,exp@2bDE1

ji1(bef f2b)DE0
ji#.

In preliminary runs,be f f has been tuned to obtain th
highest acceptance ratio. We have found that this latte
attained for an effective temperature slightly above the cr
cal temperature of the unfrustrated Ising model (Teff.5).
For higher effective temperatures, the cluster size decre
very rapidly and the algorithm then reduces to a Metropo
algorithm. WhenTeff.5, the system jumps from disordere
states to modulated states and vice versa along the
which suppresses the hysteresis between heating and co
runs observed in simulations performed with a simple M
tropolis algorithm@17#. Since the system is now equilibrate
at each temperature, one observes a double-peak structu~in
the energy histograms around the transition temperature! and
it is possible to determine the value of the specific heat at
transition.

In addition to this hybrid cluster algorithm, we have al
implemented a parallel tempering algorithm. First introduc
by Hukusima and Nemoto@35# in the context of spin glass
models, this method belongs to the class of multicanon
Monte Carlo algorithms@36# which are well adapted for the
study of first-order transitions. For a small frustration para
eterQ/J,0.1, the first-order character of the transition fro
disordered to modulated phases is expected to be ra
weak, and the hybrid cluster algorithm has a better conv
gence. For 0.1,Q/J,1, the two methods have a comp
rable efficiency. ForQ/J>1, the energy discontinuity be
comes higher, and the parallel tempering method is the m
efficient.

IV. RESULTS

A. Melting of the simple lamellar phases

A first series of simulations has been performed for e
mating the location of the transition line that separates
paramagnetic phase from the modulated phase. The tra
9-4
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tion temperature for each value ofQ/J has been estimated b
first monitoring the melting of the~known! ground state
when increasing the temperature. The results are show
open symbols~and full, dark line! in Fig. 2. The decrease o
the transition temperatureTc with increasing frustration is
more rapid than in the mean-field approximation;Tc /J drops
from 4.51 forQ50, to 3.38 forQ/J50.005, and to 2.02 for
Q/J50.1. For the largest frustration studied,Q/J51, Tc /J
.1.2, one notices, however, some peculiar features of
transition line so obtained; small cusps are observed aro
Q/J.0.04, Q/J.0.13, andQ/J.0.65; this latter case eve
corresponds to an absolute minimum of the transition cu
with Tc /J.0.934. These features can be understood by c
paring with the mean-field phase diagram in Fig. 1. T
cusplike regions precisely correspond to the location of
springing ‘‘flowers’’ of phases with complex modulation
and our study with limited system sizes misses the app
ance of these modulated phases.

Before coming back to the above point in more detail,
first address the question of the order of the transition to
paramagnetic phase. To do so, we restrict the analysis
range of frustration parameters for which the interference
mixed lamellar phases with complex modulation patterns
expected to be minimal; forQ/J between 0.2 and 0.4, on
expects a direct melting of the ground state, the sim
lamellar phasê2&, into the disordered phase~see Figs. 1 and
2!. For several values ofQ/J ~0.2, 0.22, 0.35, and 0.4!, we
have performed a finite-size scaling analysis of the transi
by varying the linear sizeL of the lattice fromL54 to L
516. We have computed the maximum of the specific h
Cv

max(L) and the shift of the apparent transition temperat

FIG. 2. Phase diagram obtained by Monte Carlo simulation. T
melting line of the simple lamellar phases~full, dark curve, and
open symbols! displays cusps aroundQ.0.04, Q.0.13, andQ
.0.65. In these regions, intermediate modulated phases appea
correspond to mixed lamellar phases~dashed lines and filled sym
bols!. The inset zooms in on the region between the^2& and ^3&
phases. The units are chosen such thatkB5J51.
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Tc(L). ~Since the total magnetization is set to zero, the c
responding Binder cumulants cannot be used for this mod!
For a first-order phase transition, the scaling laws for th
quantities are Cv

max5c0Lk and Tc(L)5Tc(`)1aL2k,
wherek is equal tod, the dimension of the system.

The maximum of the specific heat versusL is displayed
on a ln-ln plot in Fig. 3. The best linear square fit gives
exponentk53.0060.21 forQ/J50.4, which is in very good
agreement with the value expected for a first-order transit
~As shown in Fig. 3, for the other values ofQ/J, k is also
compatible with the value of 3.! The same analysis hav
been performed for the shift of the apparent transition te
perature, and the corresponding fits are also in good ag
ment with k5d53. This clearly shows that, at least in th
range of frustration parameters where finite-size scaling
achievable, the transition between the paramagnetic and
modulated phases is a first-order one.

B. Transitions involving mixed lamellar phases

For temperatures below the disordered-modulated tra
tion, the mean-field theory predicts that the system und
goes a series of transitions to various commensurate
possibly, incommensurate phases, which gives to the ph
diagram the flowerlike structure illustrated in Fig. 1. Becau
of the finite size of the system studied in simulations, it is n
possible to observe incommensurate phases, but one ca
pect to detect transitions between different commensu
phases, provided that the lattice size is commensurable
the periods of the distinct modulated phases. Since the
quired lattice sizes are larger than the maximum size of cu
simulation cells compatible with reasonable computer tim
we have used anisotropic simulation cells. The main adv
tage is that the computer time increases only likel 4L2, where
L is the largest linear size of the lattice andl is the size in the
perpendicular directions, instead ofL6 for cubic cells. Note

e

hat

FIG. 3. Log-log plot of the maximum of the specific heat vs t
linear lattice size forQ/J50.2, 0.22, 0.35, and 0.4 (L54, 8, 12,
and 16!. The straight line corresponds to anL3 behavior.
9-5
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that, because of the anisotropy, finite-size scaling argum
cannot be applied in a simple way. To characterize the tr
sition between different modulated phases, we have h
monitored the order parameteruM (k)u2, which is defined as

uM ~k!u25^Ŝ~k!&^Ŝ~2k!&

5
1

N H K (
i 51

N

@Si cos~k•r i !#L 2

1K (
i 51

N

@Si sin~k•r i !#L 2J , ~7!

whereN is total number of spins on the lattice and the bra
ets denote a thermal average. For each of the three direc
of the lattice, the wave-vector components are equa
2pp/L, with p going from2L/211 to L/2. Since the total
magnetization must be zero,L has to be an even number an
the k50 component of the order parameter is alwa
zero. The periodic boundary conditions imply th
uM (k52pp/L)u5uM (k522pp/L)u, where p51, . . . ,
(L/221). After adding the last componentuM (k5p)u ~cor-
responding top5L/2) the number of independent wave ve
tors for each direction is thenL/2. All components of the
order parameter vanish in the paramagnetic phase, whe
one or several components are different from zero in
modulated phases.

In order to show that intermediate modulated phases
pear in the regions where the transition line has cusps,
gions that correspond to the flowers predicted by the me
field approximation, we have investigated three differe
ranges of frustration parameters by using anisotropic latti

First, we have performed a series of runs forQ/J between
0.13 and 0.17 with a 12312324 lattice. In order to observe
intermediate phases, the modulation must appear along
largest direction. To prevent the system from choosing
direction at random, we introduce a bias by forcing t
modulation of the ground state in the largest direction.
have checked by comparing with cubic simulation cells t
the transition temperatures are not changed. This trick g
antees that the transition between different modulations d
take place in the largest direction chosen as thez axis. The
order parameters is only calculated along this directi
which also saves computer time. For the range of frustra
parameters studied, one obtains a sequence of two tra
tions. Figure 4 shows the variation~with temperature! of two
different components of the order parameter,kz5p/2 and
kz55p/12, for Q50.144. An intermediate phase charact
ized by a nonzero value ofuM (kz55p/12)u, which corre-
sponds to thê 32322& mixed lamellar phase, appeared f
temperatures betweenT.1.85 andT.1.77. AtT.1.85, the
^32322& phase melts into the paramagnetic phase, wherea
T.1.77, it transforms to the simple lamellar phase^2&,
which is characterized by the ordering wave vectorkz
5p/2 and represents the ground state. The transitions
also observed by monitoring the heat capacity; in Fig. 5,
peak aroundT.1.85 corresponds to the transition betwe
the disordered and thê32322& phase, and the second pe
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aroundT.1.77 to the transition between this^32322& phase
and thê 2& phase. WhenQ/J increases, the two peaks of th
heat capacity versusT curve get closer, and forQ/J50.17,
the heat-capacity curve has a single peak@see Fig. 6~a!#. It is

FIG. 4. Order parameteruM (kz)u vs temperatureT for two non-
zero ordering wave vectorskz5p/2 and kz55p/12 and forQ/J
50.144. The first transition appears atT.1.85 and corresponds to
an ordering wave vectorkz55p/12 (^32322& phase!; the corre-
sponding order parameter vanishes at a lower temperaturT
.1.77, at which a second transition to a lamellar phase chara
ized by a nonzero value ofuM (kz)u for kz5p/2 (^2& phase! takes
place.

FIG. 5. Specific heat vs temperature for 12312324 lattice and
for Q/J50.144. The right peak corresponds to the disorder
modulated transition~the modulation is characterized bykz

55p/12) and the left peak corresponds to the transition betw
the ^32322& modulated phase~wave vectorkz55p/12) and thê 2&
phase~wave vectorkz5p/2).
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worth pointing out that as illustrated in Fig. 6~b!, for the
temperature corresponding to the peak maximum, the en
histogram has a triple peak structure. The results are sum
rized on the phase diagram in Fig. 2. We have also con
ered the region, whereQ/J is between 0.12 and 0.127 with
838348 lattice. One observes an intermediate modula
phase between the paramagnetic phase and the lam
ground state with an ordering wave vectorkz53p/8 ~see
Fig. 2!.

In a second series of simulations, we have focused

FIG. 6. ~a! Specific heat vs temperature forQ/J50.17. ~b! En-
ergy histograms forQ/J50.17 at different temperaturesT51.795,
1.805, 1.815, 1.825, and 1.835. Note that forT51.815~thick line!
the system is able to flip between three different phases, the p
magnetic, thê 32322&, and the^2& phases and the histogram h
three peaks.
03610
gy
a-

d-

d
llar

n

larger values ofQ/J that correspond to the widest flowe
taking place between thê1& and ^2& lamellar phases. The
range of frustration parameters, where we have observed
termediate phases, goes fromQ/J50.55 to Q/J50.90.
We have performed simulations for different lattice size
10310312, 10310314, and 10310316. Intermediate
modulated phases occur for these different lattices, but,
to commensurability reasons, the nonzero component of
order parameter is different from one lattice to another.
comparing the energy per site of the three intermed
phases so obtained, we have found that the phase appe
on the 10310312 lattice with a nonzero componentkz
52p/3, is the most stable one forQ/J, between 0.55 and
0.75. This phase is â21& mixed lamellar phase and is show
in Fig. 2. For 0.75,Q,0.90, the 10310312 lattice has an
intermediate phase whose largest nonzero component is
kz55p/6, whereas the 10310316 lattice has an intermedi
ate phase whose largest nonzero component is forkz
53p/4. This latter phase is more stable and corresponds
^212& mixed lamellar phase~see Fig. 2!.

We have also investigated other regions of the phase
gram, where a complex structure of phases is expected
particular, we have obtained a sequence of two transitions

FIG. 7. Order parameteruM (kz)u vs kz for Q/J50.000 48 for
three different temperatures. ForT53, there are two nonzero com
ponents of the order parameter forkz5p/16 andkz53p/16, which
corresponds to â(16)& simple lamellar phase. ForT54.1, the only
nonzero component is forkz53p/32 , which corresponds to a
modulation with a half-period of 64/3@a ^(11)210& phase#. For T
54.5, all components are zero and the system is paramagnetic

FIG. 8. Spin configuration for â(16)& simple lamellar phase
with a half-period of 16 obtained at low temperatures forQ/J
50.000 48~the lattice is 838364).

ra-
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Q/J50.000 48. The ground state is a simple^(16)& lamellar
phase of half-period 16. By using a 838364 lattice, we
have observed a transition between the ground state an
^(11)2(10)& mixed lamellar phase of half-perio
21.333,. . . . This is shown in Fig. 7, where the componen
of the order parameteruM (kz)u are plotted forT53, 4.1, and
4.5. In the low-temperature region (T53), two components
are~significantly! different from zero, namely,kz5p/16 and
kz53p/16; for T54.1, only one component,kz53p/32 is
~significantly! different from zero, and for higher tempera
tures (T54.5), the system is paramagnetic and the or
parameter is identically equal to zero~within the precision of
the simulation!. Typical spin configurations are displayed
Fig. 8 ~ground state! and Fig. 9~intermediate^(11)2(10)&
phase!. Table I summarizes the transitions that we have
served for different values of the frustration parameter.

Going further into the details of the~complex! phase dia-
gram would become a very tedious task. The partial ph
diagram that we have obtained in the present paper alre

FIG. 9. Spin configuration for â(11)2(10)& mixed lamellar
phase with a half-period of 32/3 obtained at intermediate temp
tures forQ/J50.000 48~the lattice is 838364).
ll,

K

ry

.

ys
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confirms that the mean-field approach, although incorr
concerning the order of the transition from paramagnetic
modulated phases and overestimating its temperature,
vides the right structure for the low-temperature phases.
expected, the mean-field predictions becomes more accu
as lower temperatures are considered~see Figs. 1 and 2!.

V. CONCLUSION

We have studied the main characteristics of the phase
gram and of the transition for the three-dimensional Co
lomb frustrated Ising model by means of refined Mon
Carlo algorithms. We have been able to show that the ph
diagram retains the complex structure predicted by the me
field theory. In particular, we have observed in some regi
of the temperature-frustration diagram, transitions betw
different modulated phases corresponding to simple
mixed lamellar patterns. Away from these regions, we ha
shown by a finite-size scaling analysis, that the melting
modulated phases into the paramagnetic state is a first-o
transition, thereby confirming that it is driven from second
first order by the fluctuations.

a-

TABLE I. Observed sequence of transitions for several frust
tion parameters.

Q/J Lattice geometry Phases

0.000 48 838364 paramagnetic→^(11)2(10)&→^(16)&
0.001 838332 paramagnetic→^652&→^8&
0.144 12312324 paramagnetic→^32322&→^2&
0.6 737312 paramagnetic→^12&→^2&
G.
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Schüttler ~Springer-Verlag, Heidelberg, 2000!, p. 86.

@31# C. Dress and W. Krauth, J. Phys. A28, L597 ~1995!.
9-8



:

ev

MONTE CARLO STUDY OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 64 036109
@32# J. R. Herringa and H. W. J. Blo¨te, Phys. Rev. E57, 4976
~1998!.

@33# D. Frenkel and B. Smit,Understanding Molecular Simulation
From Algorithms to Applications~Academic, London, 1996!.

@34# T. M. MacFarland, G. T. Barkema, and J. F. Marko, Phys. R
03610
.

B 53, 148 ~1996!.
@35# K. Hukusima and K. Nemoto, J. Phys. Soc. Jpn.65, 1604

~1996!.
@36# B. A. Berg and T. Neuhaus, Phys. Rev. Lett.68, 9 ~1992!.
9-9


